Pre-prints / In-press
The Stability and Dynamics of Zeolite-Confined Gold Nanoclusters. (Chemrxiv) |
Published
(48) Dynamic structural evolution of MgO-supported palladium catalysts: from metal to metal oxide nanoparticles to surface then subsurface atomically dispersed cations. Chen, Y., Rana, R., ..., Bare, S., Kulkarni, A., Gates, B. Chem. Sci. (2024). [pdf] | |
(47) A reactive molecular dynamics model for uranium/hydrogen containing systems. Soshnikov, A., Lindsey, R., Kulkarni, A. & Goldman, N. J. Chem. Phys. 160, 094117 (2024). [pdf] | |
(46) Developing Cheap but Useful Machine Learning-Based Models for Investigating High-Entropy Alloy Catalysts Sun, C., Goel, R. & Kulkarni, A. R. | |
(45) Screening Cu-Zeolites for Methane Activation Using Curriculum-Based Training. Guo, J.; Sours, T.; Holton, S.; Sun, C.; Kulkarni, A. R. ACS Catal. 2024, 1232–1242. https://doi.org/10.1021/acscatal.3c05275. [pdf] | |
(44) Predicting structural properties of pure silica zeolites using deep neural network potentials. Sours, T. G.; Kulkarni, A. R. | |
(43) Bridging the Gap between the X-ray Absorption Spectroscopy and the Computational Catalysis Communities in Heterogeneous Catalysis: A Perspective on the Current and Future Research Directions. Rana, R., Vila, F. D., Kulkarni, A. R. & Bare, S. R. | |
(42) Elucidating the Initial Steps in α-Uranium Hydriding Using First-Principles Calculations. Soshnikov, B. A., Kulkarni, A. & Goldman, N. | |
(41) Interconversion of Atomically Dispersed Platinum Cations and Platinum Clusters in Zeolite ZSM-5 and Formation of Platinum gem-Dicarbonyls. Felvey, N. et al | |
(40) Atomically Dispersed Platinum in Surface and Subsurface Sites on MgO Have Contrasting Catalytic Properties for CO Oxidation. Chen, Y. et al. J Phys Chem Lett 13, 3896–3903 (2022) [pdf] | |
(39) Elucidating correlated defects in metal organic frameworks using theory-guided inelastic neutron scattering spectroscopy. Cavalcante, L. S. R. et al. | |
(38) Near-Surface Gas-Phase Methoxymethanol Is Generated by Methanol Oxidation over Pd-Based Catalysts. Gurses, S.M., Price, T., Zhang, A., Frank, J.H., Hansen, N., Osborn, D.L., Kulkarni, A. and Kronawitter, C.X., 2021. | |
(37) A Theory-Guided X-Ray Absorption Spectroscopy Approach for Identifying Active Sites in Atomically-Dispersed Transition Metal Catalysts. Chen, Y.; Rana, R.; Sours, T.; Vila, F. D.; Cao, S.; Blum, T.; Hoffman, A. S.; Fang, C.-Y.; Huang, Z.; Shang, C.; Wang, C.; Zeng, J.; Chi, M.; Kronawitter, C. X.; Bare, S. R.; Gates, B. C.; Kulkarni, A. R. | |
(36) Cs-RHO Goes from Worst to First As Water Enhances Equilibrium CO2 Adsorption. Xu, L.; Orkut, A.; Tate, G. L.; Tengco, J. M. M.; Onishi, R.; Wu, K.-L.; Kulkarni, A.; Takewaki, T.; Monnier, J. R.; Katz, A. | |
(35) Simplifying Computational Workflows with the Multiscale Atomic Zeolite Simulation Environment (MAZE). Antonio, D.; Guo, G.; Holton, S.; Kulkarni, A. R. | |
(34) Machine Learning-Assisted Sampling of SERS Substrates Improves Data Collection Efficiency. Rojalin, T.;* Antonio, D.;* Kulkarni, A; Carney, R. P. | |
(33) Bridging adsorption analytics and catalytic kinetics for metal-exchanged zeolites. Xie, P.; Pu, T.; Aranovich, G.; Guo, J.; Donohue, M.; Wang, C.; Kulkarni, A.; Wang, C. | |
(32) Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol. Zhou, B.; Huang, E.; Almeida, R.; Gurses, S.; Ungar, A.; Zetterberg, J.; Kulkarni, A.; Kronawitter, C. X.; Osborn, D. L.; Hansen, N.; Frank, J. H. | |
(31) Circumventing Scaling Relations in Oxygen Electrochemistry using Metal-Organic Frameworks. Sours, T.; Patel, A.; Nørskov, J. K.; Siahrostami, S.; Kulkarni, A. | |
(30) Direct solid-state nucleation and charge-transport dynamics of alkali metal-intercalated M 2 Mo 6 S 6 (M = K, Rb, Cs) nanorods. Perryman, J. T.; Kulkarni, A. R.; Velázquez, J. M. Journal of Materials Chemistry C 2020, 6. [pdf] | |
(29) Highly Active Bifunctional Oxygen Electrocatalytic Sites Realized in Ceria–Functionalized Graphene. Grewal, S.; Macedo Andrade, A.; Liu, Z.; Garrido Torres, J. A.; Nelson, A. J.; Kulkarni, A.; Bajdich, M.; Lee, M. H. Advanced Sustainable Systems 2020, 2000048, 1–10. [pdf] | |
(28) Metal-promoted Mo6S8 clusters: a platform for probing ensemble effects on the electrochemical conversion of CO 2 and CO to methanol. Perryman, J. T.; Ortiz-Rodríguez, J. C.; Jude, J. W.; Hyler, F. P.; Davis, R. C.; Mehta, A.; Kulkarni, A. R.; Patridge, C. J.; Velázquez, J. M. Materials Horizons 2020, 7, 193–202. [pdf] | |
(27) Supported Metal Pair-Site Catalysts. Guan, E.; Ciston, J.; Bare, S. R.; Runnebaum, R. C.; Katz, A.; Kulkarni, A.; Kronawitter, C. X.; Gates, B. C. | |
(26) 2D Conductive Ni-HAB as a Catalyst for the Electrochemical Oxygen Reduction Reaction. Park, J.; Chen, Z.; Flores, R. A.; Wallenestrom, G.; Kulkarni, A.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. ACS Applied Materials & Interfaces 2020. [pdf] | |
(25) An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces. Dickens, C. F.; Montoya, J. H.; Kulkarni, A. R.; Bajdich, M.; Nørskov, J. K. Surface Science 2019, 681, 122–129. [pdf] | |
(24) Improved Oxygen Reduction Reaction Activity of Nanostructured CoS2 through Electrochemical Tuning. Zhao, W.-W. et al. ACS Appl Energy Mater 2, 8605–8614 (2019) [pdf] | |
(23) Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: Regioselectivity and mechanism. Deshpande, N.; Parulkar, A.; Joshi, R.; Diep, B.; Kulkarni, A.; Brunelli, N. A. | |
(22) X-ray absorption spectroscopy study of the electronic structure and local coordination of 1st row transition metal-promoted Chevrel-phase sulfides. Perryman, J. T.; Hyler, F. P.; Ortiz-Rodríguez, J. C.; Mehta, A.; Kulkarni, A. R.; Velázquez, J. M. | |
(21) Screening Diffusion of Small Molecules in Flexible Zeolitic Imidazolate Frameworks Using a DFT Parameterized Force Field. Verploegh, R. J.; Kulkarni, A.; Boulfelfel, S. E.; Haydak, J. C.; Tang, D.; Sholl, D. S. | |
(20) Trends in Oxygen Electrocatalysis of 3d‐Layered (Oxy)(Hydro) Oxides. Zhao, Z.; Schlexer Lamoureux, P.; Kulkarni, A.; Bajdich, M.; Zhao, W.-W.; Bothra, P.; Lu, Z.; Li, Y.; Mei, L.-P.; Liu, K.; Zhao, Z.; Chen, G.; Back, S.; Siahrostami, S.; Kulkarni, A.; Norskov, J. K.; Bajdich, M.; Cui, Y. ChemCatChem 2019. [pdf] | |
(19) Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. | |
(18) Nature of Lone-Pair-Surface Bonds and Their Scaling Relations. Kakekhani, A.; Roling, L. T.; Kulkarni, A.; Latimer, A. A.; Abroshan, H.; Schumann, J.; AlJama, H.; Siahrostami, S.; Ismail-Beigi, S.; Abild-Pedersen, F.; Inorganic Chemistry 2018, 57, 7222–7238. [pdf] | |
(17) Cation-exchanged zeolites for the selective oxidation of methane to methanol. Kulkarni, A. R.; Zhao, Z. J.; Siahrostami, S.; Nørskov, J. K.; Studt, F. | |
(16) Single Metal Atoms Anchored in Two-Dimensional Materials: Bifunctional Catalysts for Fuel Cell Applications. Back, S.; Kulkarni, A. R.; Siahrostami, S. ChemCatChem 2018, 10, 3034–3039. [pdf] | |
(15) Ultrathin Cobalt Oxide Overlayer Promotes Catalytic Activity of Cobalt Nitride for the Oxygen Reduction Reaction. Abroshan, H.; Bothra, P.; Back, S.; Kulkarni, A.; Nørskov, J. K.; Siahrostami, S. The Journal of Physical Chemistry C 2018, 122, 4783–4791. [pdf] | |
(14) Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Feng, D.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z.; Lee, M.; Shaw, L.; Chen, S.; Yakovenko, A. A.; Kulkarni, A.; Xiao, J.; Fredrickson, K.; Tok, J. B.; Zou, X.; Cui, Y.; Bao, Z. Nature Energy 2018, 3, 30–36. [pdf] | |
(13) Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. Patel, A. M.; Ringe, S.; Siahrostami, S.; Bajdich, M.; Nørskov, J. K.; Kulkarni, A. R. | |
(12) Understanding Trends in C-H Bond Activation in Heterogeneous Catalysis. Latimer, A. A.;* Kulkarni, A. R.;* Aljama, H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; Nørskov, J. K. | |
(11) Direct Methane to Methanol: The Selectivity-Conversion Limit and Design Strategies. Latimer, A. A.; Kakekhani, A.; Kulkarni, A. R.; Nørskov, J. K.; Aljama, H.; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; Nørskov, J. K. ACS Catalysis 2018, 8, 225–229. [pdf] | |
(10) Mechanistic insights into heterogeneous methane activation. Latimer, A. A.; Aljama, H.; Kakekhani, A.; Yoo, J. S.; Kulkarni, A.; Tsai, C.; Garcia-Melchor, M.; Abild-Pedersen, F.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2017, 19, 3575–3581. [pdf] | |
(9) Identification of High-CO2-Capacity Cationic Zeolites by Accurate Computational Screening. Fang, H.; Kulkarni, A.; Kamakoti, P.; Awati, R.; Ravikovitch, P. I.; Sholl, D. S. Chemistry of Materials 2016, 28, 3887–3896. [pdf] | |
(8) Screening of Copper Open Metal Site MOFs for Olefin/Paraffin Separations Using DFT-Derived Force Fields. Kulkarni, A. R.; Sholl, D. S. Journal of Physical Chemistry C 2016, 120, 23044–23054. [pdf] | |
(7) Theoretical Insights into the Selective Oxidation of Methane to Methanol in Copper-Exchanged Mordenite. Zhao, Z.-J.; Kulkarni, A.; Vilella, L.; Nørskov, J. K.; Studt, F. ACS Catalysis 2016, 6, 3760–3766. [pdf] | |
(6) Monocopper Active Site for Partial Methane Oxidation in Cu-Exchanged 8MR Zeolites. Kulkarni, A. R.; Zhao, Z. J.; Siahrostami, S.; Nørskov, J. K.; Studt, F. ACS Catalysis 2016, 6, 6531–6536. [pdf] | |
(5) Computational prediction of metal organic frameworks suitable for molecular infiltration as a route to development of conductive materials. Nie, X.; Kulkarni, A.; Sholl, D. S. Journal of Physical Chemistry Letters 2015, 6, 1586–1591. [pdf] | |
(4) DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V). Kulkarni, A. R.; Sholl, D. S. Langmuir 2015, 31, 8453–8468. [pdf] | |
(3) Control of Metal--Organic Framework Crystal Topology by Ligand Functionalization: Functionalized HKUST-1 Derivatives. Cai, Y.; Kulkarni, A. R.; Huang, Y.-G.; Sholl, D. S.; Walton, K. S. Crystal Growth & Design 2014, 14, 6122–6128. [pdf] | |
(2) Analysis of equilibrium-based TSA processes for direct capture of CO2 from Air. Kulkarni, A. R.; Sholl, D. S. Industrial and Engineering Chemistry Research 2012, 51, 8631–8645. [pdf] | |
(1) Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air. Didas, S. A.; Kulkarni, A. R.; Sholl, D. S.; Jones, C. W. ChemSusChem 2012, 5, 2058–2064. [pdf] |