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a b s t r a c t

Zeolites, an important class of 3-dimensional nanoporous materials, have been widely explored for
a variety of applications including gas storage, separations, and catalysis. As the properties of these
aluminosilicate materials depend on a number of factors (e.g., framework topology, Si/Al ratio, extra-
framework cations etc.), detailed experiments (e.g., catalytic properties, adsorption capacities etc.) are
often limited to only a handful of materials. Computational methods have played an important role
in (1) providing molecular level insights to rationalize experimental observations, and (2) screening
large libraries of zeolites to identify promising candidates for experimental synthesis and validation.
Different levels of theory and computational chemistry codes are necessary to describe the range of
relevant phenomena such as adsorption (e.g., grand canonical Monte Carlo), diffusion (e.g., molecular
dynamics), and chemical reactions (e.g., density functional theory). Manipulation of atomic structures,
handling of input files, and developing robust workflows becomes quite cumbersome. To mitigate these
challenges, we describe the development of the Multiscale Atomic Zeolite Simulation Environment
(MAZE) – a Python package that simplifies zeolite-specific calculation workflows by providing a
user-friendly interface for systematically manipulating zeolite structures.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Zeolites are a broad class of silica-based nanoporous mate-
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ncluding gas separation and catalysis [1–3]. Transition metal
TM) exchanged zeolites combine the desirable characteristics
f heterogeneous catalysts (high thermal stability and simpler
eparations) with those of enzymes (high selectivity and re-
ctivity under mild conditions) [3] and have received consid-
rable attention as catalysts for numerous reactions, such as
Ox abatement [4] and methane valorization [5]. Computational
odeling is often used to provide insights (e.g., thermodynamic
tabilities [6], reaction barriers [7] etc.) into the reaction mecha-
isms and properties of zeolites [8,9]. Given the various length-
nd time-scales associated with molecular processes (e.g., ad-
orption, diffusion, reaction), multiscale approaches that combine
ave function theory, periodic density functional theory and
lassical force fields are often necessary [8]. While a number of
roadly-applicable software packages are available for perform-
ng these calculations [10], a software toolkit for zeolite-specific
asks would be valuable. In this work, we describe the design and
apabilities of a new python-based open-source software package

Multiscale Atomistic Zeolite Simulation Environment (MAZE).
The increasing availability of open-source software packages

11] that offer an user-friendly interfaces has greatly simpli-
ied the process of performing computational chemistry calcu-
ations. For example, the Atomic Simulation Environment (ASE),
rovides interfaces to various computational chemistry codes
e.g., VASP [12], LAMMPS [13], GPAW [14]). ASE provides Python-
ased wrappers to the underlying quantum chemical simulation
ode and offers an intuitive application programming interface
API) for setting up, starting, and analyzing calculations [15,16].
y automating the cumbersome computational setups and subse-
uent data analysis, ASE simplifies the process of performing and
nalyzing complex calculations [15,17]. Furthermore, by allowing
anipulation through Python scripts, rather than a GUI, these
alculations become self-documenting, reproducible and easy to
treamline into complex workflows [11,15].

. Problems and background

.1. Current limitations with tracking atoms within the ASE interface

Despite an active user community and continued develop-
ents within the ASE codebase [15], a few specific structural
anipulation tasks are challenging to implement within ASE.
ften a variety of structural manipulations (e.g., extracting and
einserting clusters, adding terminal H atoms etc.) are necessary
o address a zeolite-specific scientific question—the current ASE
nterface is not well suited for ‘‘tracking’’ the resulting changes in
he atom indices. This is illustrated using a simple example below.

In ASE, groups of atoms are represented in memory by Atoms
ython objects. In an Atoms object, the properties of all of the
toms are stored in NumPy arrays. When a specific atom in
n Atoms object is accessed using the get_item method (e.g.,
y_atoms[index]) an Atom object is created, which has (among
thers) the attributes ‘tag’, ‘position’, ‘symbol’ and ‘index’. The
nderlying data structure for storing the atoms properties is
ighly efficient, since it does not require storing an individual
ython object for each atom represented by an Atoms object.
nfortunately, it also means that the indices of each atom can
hange with each addition or deletion. Fig. 1 shows the structures
nd atom indices for various glyoxal derivatives, demonstrating
ow structural manipulations can alter the indices of atoms.
Fig. 1 shows how the indices of the individual atoms can

hange when additions and deletions are performed. The most
ronounced difference is in the fourth structure, where the dele-
ion of two atoms causes the decrement of the index 4 and 5
o 2 and 3 respectively. The addition of atoms simply extends
he arrays and are thus added to the end. There is no inherent

ordering in the indices; the order in which atoms are added to a
structure effects the final order of atoms. If a substitution is made
by changing the identity of a given atom, then the indices remain
unchanged. The mutability of Atoms objects, and subsequent
index shifting, introduces significant complexity in tracking the
relationship and identity of atoms. These are a major bottlenecks
for developing workflows that include both periodic and cluster
calculations with zeolites.

2.2. The MAZE solution

Recognizing the challenges outlined above, the MAZE package
puts the atom relationship tracking at the center of its design,
while maintaining compatibility with all existing ASE’s features.
As demonstrated in the following sections, it greatly simplifies
zeolite workflows and reduces the difficulty in performing a
series of structural manipulations.

3. MAZE architecture

3.1. Architecture overview

The MAZE project aims to include all of the functionality of the
base ASE package while including additional functionality related
to the tracking of atoms. This is incorporated by using inheritance.
A zeolite is a group of atoms, so it is appropriate to create a Zeolite
class that inherits from ASE’s Atoms class. The Zeolite class rep-
resents a zeolite and includes additional methods and properties
for identifying the unique crystallographic sites. Polymorphism
ensures that the Zeolite class has all of the attributes and methods
of the parent Atoms class. Thus, all of ASE’s methods and classes
also work well with it.

The additional functionality of the Zeolite class is divided
between two classes, the parent PerfectZeolite class and its sub-
class Zeolite. The PerfectZeolite class includes the functionality
for building a Zeolite from a labeled CIF file and preserving the
site labels. The methods included in the PerfectZeolite are all of
those related to site identification, and serialization. In a group of
zeolites there can be only one perfect zeolite, from which all the
derivatives (e.g., Bronsted H versions, adsorbates etc.) are made.
A simplified unified modeling language (UML) class diagram for
the Zeolite and PerfectZeolite classes is presented in Fig. 2.

Users of the MAZE package will interact primarily with Zeolite
objects. The main additional features of the Zeolite class versus
the PerfectZeolite class are related to atom manipulation, such
as adding atoms, deleting atoms, extracting clusters and capping
clusters. By dividing the functionality between two classes, the
attributes that make a Zeolite and those involved in structural
manipulation can be separated, greatly simplifying the underlying
code. The underpinning of the Zeolite functionality is an internal
IndexMapper object, which tracks the relationship between the
indices of the atoms in the zeolites derived from the same parent
structure.

3.2. The IndexMapper class

The instances of the IndexMapper class are responsible for
tracking the relationship between atom indices. A reference to
an IndexMapper object is an attribute of each Zeolite class and
related Zeolites share the same IndexMapper. The IndexMapper
does not directly encounter Atoms objects, but only works with
their indices. The core data structure of the IndexMapper is the
main_index, which consists of a collection of nested dictionaries.
The key of the outer dictionary is the unique id of each row of
atoms in the object (Fig. 3). The inner dictionary consists of each
2



Dexter D. Antonio, Jiawei Guo, Sam J. Holton et al. SoftwareX 16 (2021) 100797

e
i

t
a
t

Fig. 1. Relationship between indices in Atoms objects derived from glyoxal. The columns relate the indices of different Atoms objects to each other and the atoms in
ach structure are labeled with their corresponding indices. The indices shifting issue becomes more pronounced when multiple structural operations are performed
n series. For example, if the O and H atoms are added back to #3 to recover #1, their indices (4 and 5) would differ from the initial structure.

Fig. 2. Simplified unified modeling language (UML) class diagram for the Zeolite
object. Inheritance relationships are denoted by an open arrow. The Zeolite class
inherits from the PerfectZeolite class, which inherits from the Atoms class.

zeolites name attribute followed by the index of an Atom or a
None object.

The main_index in the IndexMapper object records the rela-
ionship indices of different Atoms objects. The unique_id assigns
unique identifier (ID) to each atom. This ID does not depend on
he atom species and if an atoms type is changed from silicon to

tin, for example, the ID remains unchanged. The row shows the
relationship between the indices across different Atoms objects.
For example, in row four (i.e., index 3 of the dictionary), the
ID equals 3 and the indices of the parent, Zeolite_1 and Open
Defect_5 are all equal to 3. The equivalent atom index in Clus-
ter_3, which consists of an extracted cluster from Zeolite_1 is
0. Cluster_3 consists of 21 atoms, and the Open Defect_5 object
consists of all of the atoms in Zeolite_1 with the exception of the
atoms in Cluster_3. Thus, Open Defect_5 final indices are offset
by 21 as can be seen in the final rows of the table.

The main_index is automatically updated when each atom
manipulation operation is performed and does not require ad-
ditional intervention from the user. The index mapper class can
be used to directly map between two related zeolites with the
get_index function, yet its core benefit comes about by enabling
the structural manipulation functions such as cap_atoms and
integrate.

Complimenting this index mapper are the add_atoms and
delete_atoms methods in the Zeolite class, which return a copy
of the original Zeolite object with the applied modifications and
append a new column to the IndexMapper’s main index. This new
column contains the indices of the newly created Zeolite object
and each row indicates the relationship between the atoms in
other zeolites. If a Zeolite object is deleted, then the deconstructor

Fig. 3. Dictionary representation of the main index mapper for a collection of related Zeolites. The keys of the outer dictionary represent the unique IDs, where the
inner dictionaries map the relationship between indices for the same shared atom across different Atoms-like objects.
3
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Fig. 4. Comparison between MAZE and ASE code for generating a BEA zeolite structure with the Silicon T2 sites replaced by aluminum atoms. The MAZE code uses
the built-in make function to read the unmodified CIF file and store the mapping in the site_to_atom_indices dictionary. The longer ASE code requires a modified
CIF file as input, and the element mapping to be manually defined. Both codes generate and visualize the same BEA T2 Si→Al structure.

Fig. 5. Workflow for cluster integration. A blue arrow shows the workflow
irection, starting with a BEA zeolite constructed using the make method. The
unctions or operations required to transfer from one structure to another are
hown between the structures on the blue line.

ill remove its corresponding entry from the IndexMapper, pre-
enting the main index from being cluttered with deleted Zeolite
bject indices.

. Illustrative examples

To demonstrate the capability of the MAZE code and assess
ts API three distinct tasks were performed. These tasks include
uilding a Zeolite object from a labeled International Zeolite
ssociation (IZA) CIF file, adding and removing atoms, and a
omplete workflow involving removing a cluster, changing some
f its atoms and reinserting it back into the original zeolite.

4.1. Building a zeolite from a CIF file

Zeolites often contain multiple distinct T-sites, each of which
has unique chemistries arising from differences in the local atomic
environment. Comprehensive zeolite screenings studies require
all unique T sites to be systematically explored. Computational
studies of this type start by downloading a CIF file from the IZA
database, placing the file in the project folder and reading the
CIF file into an Atoms object with the ase.io.read function. One
challenge with this approach is that CIF files downloaded from
the IZA database contain extra information about the identity of
unique atoms, which is not preserved when the CIF file is loaded
with ASE’s read function. Thus, various ‘‘hacks’’ are needed to
align the Atoms object built from the CIF file with their labels.
One hack used in our group involves changing a unique site from
a silicon to an unused atom such as xenon, and when the Atoms
object is loaded reverting it back to a silicon, noting the indices
(see Fig. 4, right). This manual tagging mechanism is slow, opaque
because the code is no longer self-documenting, and error prone,
since it involves manually editing a critical data file.

The MAZE package significantly improves this process by in-
troducing the make method. The make method takes a zeolite
IZA code as input, looks for the corresponding CIF file, and if it is
not found attempts to download the zeolite CIF file from the IZA
database. After locating or downloading the correct CIF file, the
make function then builds a Zeolite from a IZA CIF file, and stores
the mapping between the indices and their identities in two of
the Zeolite objects internal dictionaries. The identities of the sites
can then be determined by using the get_site_type method or by
accessing the dictionaries directly (Fig. 4).

4.2. Structural manipulations

The Atoms class’ structural manipulation features allow atoms
to be added and removed from the collection and the properties
of individual atoms to be altered. The API by which these manip-
ulations are performed is inspired by Python’s list manipulation
methods. Although familiar to Python users, these manipulations
4
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Fig. 6. Code required to generate structure F from structure A.

re not self-consistent as some have side effects (e.g., the pop
ethod) while others are side effect free such as the __add__
ethod. In zeolite workflows, it is common for many derivatives
f a single parent zeolite to be generated, and this is complicated
y methods with side-effects, due to the need for explicit copying
rior to each modification.
In alignment with the goal of the MAZE project, new methods

or atomic manipulation were designed, which do not mutate the
nderlying object, and instead return a copy with the applied
odifications. These methods (add_atoms and delete_atoms) sim-
lify the computational workflows and also allow for method
haining improving code readability. A list of the available meth-
ds for the ASE Atoms object and the MAZE Zeolite object are
hown in table S1.

.3. Cluster extraction, atom capping and integration

The power of these additional structural manipulation fea-
ures can be demonstrated by performing a complex workflow.
typical zeolite unit cell contains over one-hundred atoms, but

he region of chemical interest is frequently confined to the
toms adjacent to a few T-sites. To reduce the computational
xpense of quantum chemical calculations, the calculations are
ypically performed on a smaller subset of atoms adjacent to the
ctive sites of interest. This subset of atoms is referred to as a
luster [18]. Capping atoms (usually, hydrogens) are added to the
erminal cluster atoms to make chemically meaningful structures.
he optimal position for the capping atoms is based on the parent
eotype’s structure. After the capped cluster’s structure has been
ptimized, the cluster can be integrated back into the initial
eolite for further downstream analysis.
This workflow is extraordinarily difficult to perform with the

SE base package due to the challenge associated with tracking
he relationship between atom indices during the extraction,
anipulation, and reinsertion step. The Zeolite class’s built-in

ndex mapper ensures that the relationship between atoms can
asily be determined and forms the basis for the simple functions
hat perform this workflow. In Fig. 5 a pictorial representation of
tages in the workflow is shown along with the methods needed
o perform the transformation from one stage to the next.

The overall workflow has six distinct structures bridged by
unctions which take the previous structure as an input and
utput the new structure. The cluster structures (B, C, D, E)
ave different indices than the BEA frameworks (A, F), yet the
ndices can easily be mapped to each other using the built-in
ndexMapper’s get_index method. Since the functions do not alter
he zeolite to which they are applied, and instead return a new
eolite object, they can be chained together. The chained methods
equired to transform structure A into structure F is shown in
ig. 6.
The code presented in Fig. 6 demonstrates how a complex

orkflow can be achieved with the chaining of several functions
ogether. This simplicity allows for knowability of the operations,

precise and complete operability, and robustness due to high
readability. The scrambling of the indices with the cluster ex-
traction does not allow for consistent code using the base ASE
package. Instead, the indices of each atom must be matched
manually at each stage of the process. Thus, the MAZE package in-
terface has increased the knowability, operability and robustness
compared to the cumbersome manual workflow required when
using the base ASE package.

5. Impact and conclusion

The improved API of the MAZE package was presented here by
demonstrating how to perform representative tasks. Several other
features of the MAZE package include database integration and
adsorbate additions. A complete description can be found in the
documentation, which is referenced in the supplementary mate-
rial. MAZE’s improved API builds on-top of the Atomic Simulation
Environment. This new interface facilitates computational zeolite
calculations by greatly simplifying the steps needed to perform
common zeolite tasks. [2] Computational experiments are less
labor intensive than wet lab experiments, but lack of optimal
APIs for scientific software and complex workflows can incur a
significant time commitment from researchers to setup and run.
By creating custom software tailored to the specific task, research
can be simplified and larger scale experiments can be conducted.
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